import cv2
import numpy as np
import mediapipe as mp
# mediapipe入门
# 画图必备
mp_drawing = mp.solutions.drawing_utils
# 默认绘图风格
mp_drawing_styles = mp.solutions.drawing_styles
# 自定义绘图风格 参数:1、颜色,2、线条粗细,3、点的半径
DrawingSpec_point = mp_drawing.DrawingSpec((0, 255, 0), 1, 1)
DrawingSpec_line = mp_drawing.DrawingSpec((0, 0, 255), 1, 1)
# 导入方法
mp_face_detection = mp.solutions.face_detection # 人脸检测
mp_face_mesh = mp.solutions.face_mesh # 面网格
mp_hand = mp.solutions.hands # 手
mp_pose = mp.solutions.pose # 姿势
# 参数设置,使用"with 等号右侧 as 等号左侧:“,简便且安全
mode_face_detection = mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5)
mode_face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True,
min_detection_confidence=0.5)
mode_hand = mp_hand.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5)
mode_pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
'''
with mp_face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as mode_face_detection:
with mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True,
min_detection_confidence=0.5) as mode_face_mesh:
with mp_hand.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5) as mode_hand:
with mp_pose.Pose(static_image_mode=True, model_complexity=2, enable_segmentation=True,
min_detection_confidence=0.5) as mode_pose:
'''
# 开启摄像头
cap = cv2.VideoCapture(0)
# 判断开启摄像头是否成功
while cap.isOpened():
success, img = cap.read()
# 玩一玩,打开摄像头失败时弹出图片
blank = np.zeros((720, 1280, 3))
if not success:
cv2.putText(blank, 'Please Check Your Camera', (150, 250), cv2.FONT_HERSHEY_TRIPLEX, 1.0, (0, 255, 0), 2)
cv2.imshow('Text', blank)
cv2.waitKey(1)
continue
img.flags.writeable = False
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 增强对于视觉的识别能力
# RGB图像处理
result_face_detection = mode_face_detection.process(img)
result_face_mesh = mode_face_mesh.process(img)
result_hand = mode_hand.process(img)
result_pose = mode_pose.process(img)
# 绘制关键点与连线
img.flags.writeable = True # 官方文件都有这个,还不理解作用是啥
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 恢复原图像色彩
# 绘制脸部识别
if result_face_detection.detections:
for detection in result_face_detection.detections:
mp_drawing.draw_detection(img, detection)
# 绘制脸部网孔
if result_face_mesh.multi_face_landmarks:
for face_landmarks in result_face_mesh.multi_face_landmarks:
mp_drawing.draw_landmarks(image=blank, landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_tesselation_style())
mp_drawing.draw_landmarks(image=blank, landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
mp_drawing.draw_landmarks(image=blank, landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_iris_connections_style())
# 绘制手部节点
if result_hand.multi_hand_landmarks:
for hand_landmarks in result_hand.multi_hand_landmarks:
mp_drawing.draw_landmarks(blank, hand_landmarks, mp_hand.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# 绘制身体节点
mp_drawing.draw_landmarks(blank, result_pose.pose_landmarks, mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
# 翻转镜头,设置关闭条件
cv2.imshow('MediaPipe Face Detection', cv2.flip(blank, 1))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Q
qlhy
@qlhy
Mediapipe_learning.py